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PREFACE

The multiple arc trajectory optimization is one which constantly
confronts Air Force flight vehicle systems, both in air-to-air and
air-to ground operations. The most difficult of problems here includes
both bounds on state and control, and yet it cannot be avoided because
this is, in fact, the situation in Air Force flight vechiles. This
report appears to represent one of the most important pieces of work
presenting results of importance both for flight control because of the

greatly effecient algorithms developed in this report.
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SECTION I
INTRODUCTION

The past decade has seen consideradle progress in techniques for
optimization of nonlinear dynamical systems. The development of large
digital computers coupled with the interest in optimal control theory,
particularly in optimizing of spacecraft trajectories, has inspired a
large volume of literature devoted to both the mathematical theory of
optimal processes and the methods for obtaining solutions to these
problems. Nevertheless, from the computational standpoint the class
of control problems with constraint state variables has acarcely been
considered, although these types of problems often occur in engineering
practice. For example, the velocity of a vehicle may be limited by
structure breakdown or a motor may be overloaded to prevent safety and
relisbility of operation. Bryson, Denham and Dreyfus (1), [2)" and
Starr [3) have treated this class of problems using the steepest
descent technique and a suitable combination of various non-gradient
techniques, respectively. Others (2], [4] have reduced the constraint
problem to unconstrained status by introducing the penalty function in
place of the constraints on the state variables.

The method of steepest descent is excellent for finding an
approximate solution quickly, but it often exhibits very slow
convergence, whereas other techniques frequently face the problem of
computational stability in the solution of the two-point boundary value
problem. It is hoped that the method of conjugate gradients would

*W.F. Denham, and A.E. Bryson, Jr.,"Optimal Pro
s . gramming Problems with
Tnequality Constraints II: Solution by Steepest Descent." A
Vol. 2, No. 1, pp.25-34, January, 1964, T " ALMA Journal,
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offer an improved and more efficient computational method, which is the

objective of this study.
For completeness, some basic concepts from functional analysis to

be used in the sequel are given in Section II, and a review of the
conjugate gradient method of Hestenes and Stiefel for linear operator
equations and the extension to nonlinear operator equations are given
in Section III with emphasis toward control applications. Section IV
discusses the class of control problems to be considered. The
computational aspect of the state variable constraint control problems
is presented in Section V. The application of the method of conjugate
gradients to this class of optimal control problems is discussed. An
algorithm is given showing the construction of the sequence of control
functions that extremize a given performance functional. Sections VI
and VII consider two practical engineering applications: 1) a
minimum time problem in two dimensions with the constraint on the
state variables being a circle, and 2) a re-entry vehicle problem
with altitude constraint for which the range is to be maximized. A
comparison of the rate of convergence with the method of steepest
descent is given in the first problem. The results showed that the
method of conjugate gradients provided a higher rate of convergence,

but not as rapid as for the cases without state variable constraint.
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SECTION II
BASIC CONCEPTS FROM FUNCTIONAL ANALYSIS

Some definitions and fundamental theorems from analysis which will
be used in the following discussion are given below. Let V be a real
Hilbert space with inner product denoted by (*,*). u, h are elements
in V. A function ¥(h) is written o(||n||) 1I‘Héﬁ-l-oo as ||nll <0,
and a function #(h) is written O(!|nl|) if |4(n)| < N|Inl! as IInll » 0
where N is a positive constant and ||nll = (h.h)”.

Definition 2.1. If there exists a continuous linear functional
G(u) on V such that

|ECu+h) - E(u) - G(u)n| = o(||nl!) (2.1)

as [1n!l +0, then the linear functional G(u) is called the Frechet
derivative of E at u and G(u)h is called the Frechet differential of
E at u with increment h.

The higher derivatives are defined in a similar menner. Denote
the con,jt;gate space of V by V*, the space of all linear functionals

on V. Denote the norm on V* by ||«]]e,

Definition 2.2. If there exists a continuous linear operator
F(u) from V into V* such that

[1G(u+h) - G(u) = F(unll* = o(}Inll) (2.2)

as [In]| & 0, then the operator F(u) is called the second Frechet
derivative of the functional E, and E is said to be twice differentiable.
F(u)h is called the second Frechet differential.

Definition 2.3. If the limit ECutOh) = EB(W) ., oxists,




and let

E(u+6h) - E(u
$E(u,h) = 1an EluOhlc E(w) .5

60
then 6E(u,h) is called the Gateaux differential of E at u with

increment h. Similarly for the second Gateaux differential at u with
increments h and k,
8E(u,h,k) = 1im SECuNeh) - 85(s,h) (2.4)
A=0
provided the limit exists.

From the above definitions it can be seen that if the Frechet
differential exists at u, then the Gateaux differential also exists,
and the two differentials are equal. Although the converse may not
necessarily be true, the sufficient conditions are provided by the
following theorem. The proofs of the following four theorems may be
found in books on functional analysis such as references [5], [6].

Theorem 2.1. If 8E(u,h) exists in ||u-u°|| Su, u>0, and if it
is uniformly continuous in u and continuous in h, then the Frechet
differential exists and G(uo)h = GE(uo.h).

From the viewpoint of studying extremal points in function space,
the concept of Frechet differential is essential, but from the
computational standpoint the Frechet derivatives are often obtained
through Equations (2.3) and (2.4) whenever the conditions stated in
Theorem 2.1 are fulfilled.

Since G(u) is a continuous linear functional, by the Riesz

representation theorem there exists an element VE(u) 4in V* such that

G(u)h = (VE(u),h)

e . - e -




for every h ¢ V. VE(u) is called the gradient of I at u. Because

F(u)h ia a continuous linear functional on V, then
(F(u)ndn = (Rg(u)n,h)

where Hx(u) is a continuous linear operator on V. Hn(u) is called the

Hessian of E at u. If h is a unit vector, (VE(u),h) may be regarded

as a directional derivative of E in the direction of h.

e T ot R R

Theorem 2.2. Suppose that the functional E on V has a relative
i extremum at u®. It is necessary that VE(u®) = 0, i.e., G(u®)h = 0
| for all h in V,
Theorem 2.3. Suppose that the functional E on V has a relative
extremum at u® subject to constraints “j(“) = 0, J=1,2,sss 0. Suppose
that VAJ(u) exist and that they are linearly independent. If

VE(u®) # 0, it is necessary that there exist unique real numbers
\1.\2.....Xn not all zero such that

n
VE(u®) =" A V8, (u*)

(2.5)
1

Theorem 2.4. If the Gateaux differential 8E(u,h) of a functional

s et

E exists at each point of some convex set DC V, then for any u and
u+h in D,

E(u+h) - E(u) = 8E(u+th,h) (2.6)

for some t in [0,1], and similar expression holds when E is an operator.

Definition 2.4. The operator F mapping V into V is called

E————— T e s

continuous at u, ¢ V, if for any sequence \“n} which converges to LA
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i.0., lim Ilun-uoll = 0, the sequence .:r(un)" converges to !‘(uo).

n -0
i.0., lim |l!‘(un) - r(uo)ll = 0.
n-o>oao

SECTION III
METHOD OF CONJUGATE GRADIENTS

3.1 Historical Survey

The method of conjugate gradients was originally developed for solving
linear systems of algebraic equations independently by Hestenes and Stifel
[7]. [8] in 1952. Hayes [9] extended the method in 1954 to solve linear
operator problems on Hilbert space. Antosiewicz and Rheinbodlt [lq in 1962
gave further consideration to the rate of convergence of the method. Fletcher
and Reeves [11) in 1964 applied the conjugate gradient technique in minimizing
positive definite quadratic functionals in finite dimensional space. Daniel
[12] in 1965 gave an improved estimate of the rate of convergence and discussed
the applicability of the conjugate gradient method to nonlinear operator
equations. In the area of application of this technique to optimal control,
Lasdon, Mitter and Warren [13], and Sinnott and Luenberger (14 have treated

unconstrained problems with considerable success.

3.2 Linear Theory

(a) Sequence of Expanding Subspaces

Let A be a postive defintie, self-adjoint, continuous linear opera-
tor with domain V, a real Hilbert space, and range RC 7. Then there
exists a real number m such that (u, Au) m (u,u) for every u in V, and

1

A has a continuous inverse A"~ whose domain is R and range V. The linear

equation

Ay = k (3.1)
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has a unique solution h = A2k for any given k ¢ R. Suppose u is an
estimate of h. h-u will be referred to as the error, r = k-Au will be
called the residual of u as an estimate of h, and
E(u) = (h-u,A(h-u)) (3.2)
is called the error functional. Since A is positive definite the
problem of solving Equation (3.1) may be treated from the variational
setting by minimizing the error functional in (3.2).
Finding the solution to Equation (3.1) by minimizing the error
functional E in Equation (3.2) using iterative procedures often

involves a sequence of expanding subspaces, i.e., a sequence of closed

linear subspaces Bn of V such that

BnC: Bn*l

1
The iterative procedure is the basis of the conjugate gradient

method. The following three theorems illuminate the underlying
philosophy of the iterative procedure.

Theorem 3.1. Let B be a linear subspace of V and LR in V. Then
the functional E in (3.2) satisfies B(uo) < E(u°¢y) for every y in B
if and only if VE(u ) or the residual at u, is orthogonal to B. In

particular, n(uo) £ E(u) for every u in V 4f and only if u, = h, the
solution of Equation (3.2).

T
The assumption that A is self-adjoint is not essential since from the

theoretical point of view the equations Ax=k and Bxab, where B=A®*A
and b=A®k, A® is the adjoint of A, are equivalent.

Rl



|
]
[}

Proof: let y be any non-sero element in B. Then
E(ugvy) - E(u)) = (y,Ay) + (VB(u ),y «
Hence if VI(uc) is orthogonal to B, then
E(u+y) - E(u)) = (y,Ay) >0,
or B(uo) S E(u +y) for every y in B. If for every y in B, then for
any real t
E(u tty) = !(uo) + t(vt(uo).y) 2 tz(y.Ay)
wvhich implies that t(vl(uo).y) * tz(y.Ay) 2 0. This expression can be
true for sufficiently small t only if (VE(u ),y) = O or VE(u)) is
orthogonal to B. Finally, if v, minimizes E on V, V!:(uo) = z(Auo-k)
must be orthogonal to V, and hence must be zero. But A is positive
definite, therefore u, = h.

It is interesting to consider a geometric interpretation of the
statement of this theorem. E(u) = constant defines a family of
ellipsoids about h, and the gradient of E at u is orthogonal to the
ellipsoid through u. The linear subspace B is a hyperplane through
the origin, and u°+B is a hyperplane through Uy e Suppose it intersects
the ellipsoid E(u) = E(uo) = M. Then there is a region on the hyper-
plane within the ellipsoid so that E(u) € M unless u +B is tangent to
the ellipsoid through u  or vn(uo) is orthogonal to subspace u +B
(see Figure 3.1).

In view of the positive definite and continuity properties of E
and Theorem 3.1, we have the following conclusion.

Theorem 3.2. let B be a closed subspace of V. There exists a
unique u, in B that minimizes E(u) on B, and (vﬁ(uo).y) = O for every

y ¢t B.
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E(u) = M

Ve

Figure 3.1. A geometric interpretation of Theorem 3.1

Theorem 3.3 Let. Bn}be an expanding sequence of closed sub-
oo~ i
spaces of V, and V = U Bn’ Let {un}be the sequence of points such
0o
that u ¢ B and E(un) = min{E(u). ue Bn}‘ Then u > h as n = .
Proof: Since ‘-.Bn.;' is an expanding sequence, "\E(u n) Jis a
decreasing sequence, and there exists a real \ so that E(%) = )‘n -

as n+oo. E(u+ty) 2\ for any t and y ¢ V; this implies that
(r Aty )2 < (O _-\)y,ay)

so that for y = u -u_, mén
(E(up)-A] + [E(u)-2] 2 (u~up Al ~u )

But A is positive definite, which implies that {un'\) is a Cauchy
sequence. Since V is complete, therefore uw hasn=som,

Suppose that V is separable so that there exists at least one




linearly independent sequeace {Pn} v Py in V, so that the finite-

dimensional, and hence closed, linear subspaces Bu spanned by
()
{po.pl.....pn_l}tonod an expanding sequence with Unn = V. As a
(o]
practical matter in applying Theorem 3.2 we must solve the minimiza-

tion problem
E(un) = min {E(u).u ¢ Bn>

for each n, and the solution will be expressed as

n
\—‘
5L
=0

<

where the coefficients °nj depend on n. It would be convenient for
this procedure if the coefficients would be independent of n, and this
leads to the following topic.

(b) Conjugate Direction Method

Definition 3.1. Let Ppe Py be non-zero elements in V. 1If

(pgehp,) = 0, m £ n

then Pa and P, are said to be A-conjugate or A-orthogonal.

The iteration method in which the sequence of non-zero elements
‘:’n} that is chosen to satisfy the A-conjugate condition is a
conjugate direction method. The elements {po.pr... may be determined
before tne iterative process, or the element P, Bay be determined at
the nth iteration. Let cﬂd’i be an approximating sequence to
the solution h. It follows from the definition above that the space
spanned by Py is A-orthogonal to the subspace 'n spanned by

TR
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{’o"l""'pn-l}' and consequently the coefficients °nj are
independent of n.

Lemma 3.1. ht{pa}bn a sequence of elemente in V whose elements !
are mutually A-orthogonal. Let Bn be the subspace spanned by

<p°.p1..... n-1>‘ Suppose that

B e T

“mel * Yn*%Pa
(‘“(“.)OP.)
n * T2, A, ‘

then w, minimizes E(u) on B,.

Proof: It follows from Uy = Ug ¥ 1Pyt (VE(n.).pJ)
= (VE(un_l).pJ)+Za._1(Ap._1.pJ). For j < m-1, we have (VB(u-).pJ)

= (VE(um_l.pJ). By the definition of o, (vn(ujd).pj) = O. Hence

(VE(un).pJ) = 0 for j=l,.ee,m=1 OF v:(u-) is orthogonal to B , and

the assertion follows from Theorem 3.1.

It is interesting to observe that if V is finite dimensional,

say n, then “n'h' and the iteration always converges in finitely
many steps. Whenever (VE(u').p.) = 0y W, = U and the minimum of

E(u) in Bm is also the minimum in Bml. This occurs, for example,

when u‘-h. The assumption that the iteration starts with uo-o is not

essential. For if u 4O, consider the problem A(u#uo) = ki the

A B A i

A A A
iteration u =0, u‘ﬂ-n.-t[(-VE(um).p‘)/Z(pn,Apu)]pn then converges to
the solution Q-h-uo. As an immediate consequence of the above lemma

and Theorem 3.3, we have the following.

11
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Theorem 3.4. let C’n} be a sequence of elements in V whose
elements are mutually A-ort%grul. lat Bn be the subspace spanned by

{Povploooupn_l} and V IUBno Let LR be arbitrary, and
0

Ynel = Ym ¥ %Pm
(-VE(%).pm)
G‘ 3 !szo:Pm’ A

Then u, converges to the solution h.

(c) The Method of Conjugate Gradients
In the discussion above on the conjugate direction method, the
determination of the sequence of vectors {pn}wu governed only by the
requirement that they be A-conjugate; their determination remains
relatively arbitrary. From the computational standpoint, it is
convenient and frequently desirable to generate the pn'a at each
step in the iteration process. The method now introduced is the
algorithm used by Hestenes that generates a particularly useful set
of conjugate directions. Each direction P, is generated by
"A-conjugate-izing" the gradient vector, and thus the name conjugate
gradient is given.
The iteration is defined as follows:
let v, be arbitrary
VB(u,) = AAu -k)
P, = -W(\lo) .

Having obtained u , vt(un). and p , the iteration is continued

according to the expressions below.




T ——

(-Vl(un ) ’ Pu)

“n+1

(3.3)

+
"Wty

vn(un) = Z(Aun +1'k)
(vE(un) .Apn)

e Y i
n an Pn

= -VE(u

P n+l n+1) % .npn

Theorem 3:5. The quantities defined by the iteration process
above satisfy the following relations:

(Pyrdp,) =0, m#n (3.4)

<Pn'v3(“n)) =0,m<n
(s VE(u,)) = 19ECu )12, m >
(VE(um).VE(un)) =0, mgn

Proof: From the defining expressions of a, and ﬂn. the
equalities above may be shown by induction.

Corollag: The conjugate gradient method is a special case of
the conjug-te direction method.

Proof: The assertion follows from expression (3.4) above.

If the set of vectors {po.pl.... generated above spans V, then
the solution h would be achieved by Theorem 3.3. However, even for
the cases in which the set {po.pl....} is not complete in V,
nonetheless, we can still claim that u, converges to h. This is an
important and desirable fact of this method. The next theorem is

13
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5’ devoted to demonstrating that point.
Lemsa 3.2. o as defined by Equation (3.3) is bounded above by

e
1p, 1372¢p . p,).

2 2 2 2
| Proof: Ilp I'® = |WE(u )] "n-l”’n-l”
2 INE )12

¢ Therefore,

Hp 112 INEQONZ  N1p 112
ORI R O T oI
o lp, 112
i “nsu:mu)nz

22,

lemma 3.3. let o = sup {x.x ¢ spectrum of the poaitive definite,

self-adjoint, continuous linear operator A). Then

1o, |

350

Proof: The lemma follows from the fact that

(p,+Ap,)
o'e oy S8 Au) n'"*n
uev (WY Pp'Py

Lemma }.b. E is a strictly decreasing function of n, i.e.,

- T S

I(\ln) > t(u‘ﬁ). unless the solution is attained at the nth ,
f iteration. 1

; Proof':
Blu,)-E(u ,,) = E(u )-B(u +ap )
. -aa‘(p‘,A(h-\))—c:(pn.AP,)




= 0,(p, VE(u,))-a2(p_,Ap_)
(pyr VECu,))
= Cn(anVB(\ln»-an W (pn'Apn>

an
5 ‘é‘ (an.VE(nn))
- ;.'l vaun)u?

The quantity ;’-’ ||VB(un)l 12 38 positive unless u =h, which is the
assertion.
Theorem 3.6. The sequence {“n }obtained from the above conjugate
gradient method converges to h, the solution to Equation (3.1).
_l:_r_g_g{: In Theorem 3.3, we have shown that the sequence (un}
converges to some element in V, say u®. {E(un)} is a monotonically
decreasing sequence that is bounded below by zero, hence it converges.
It follows from the expression in Lemma 3.4
lim ;‘l I1VE(u )[12 = 1im [Eu )-ECu_.))
£ B n n e n n+l

800

But according to Lemma 3.3, a 232-- Thus, |1VE(u )l = [12A(h-u))(!
converges to zero as n s . By continuity, A(h-u*) = O. A, being
positive definite, implies u*® = h.

3«5 Nonlinear Theo:z
Aside from the case of linear or quadratic functionals, when the

Frechet differential of the functional is set equal to gzero, the
resulting equation is nonlinear. 1In this chapter we will consider
the extension of the technique discussed previously for the linear

15
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theory to solve the equation of the form

P(u) = 0

where P is a nonlinear operator mapping the real Hilbert space into
itself. Suppose that u® is the solution to the above operator

equation. Then
0 = P(u*)

P(u+(u®-u))

P(u)+F(u) (u*-u)+o(! lu*-ull)

where F(u) is the Frechet derivative. Therefore, for u sufficiently
near the solution u®*, i.e., |lu*-ull sufficiently small, we almost
have a linear operator equation with the linear operator F(u). Since
F(u) depends on u in general, if we generate conjugate directions with
respect to F(u), we can at most assert that any two consecutive P,
vectors are F(u)-conjugate, while the other vectors are approximately
F(u)-conjugate depending on how near u is to u®.

Assume that the error functional E (or performance functional, as
it is often called in control theory) defined on V possesses the follow-

ing representation about u

E(u+h) = E(u)+(P(u),h) + 3(F(u)h,b) + O(I[al1%) a5

vhere P(u) and F(u) are the first and second Frechet derivatives,
respectively. Suppose that E attains its minimum at u; then by
Theorem 2.2, we can assert that the linear operator F(u) is positive
definite in some neighborhood D about u. We will make the assumption

16




that F(u) is self-adjoint. As we shall see in the following sections

§ concerning the application of the method to control prodblems, the
i operator F(u) is indeed linear, positive definite, continucus and
¢ self-adjoint.

i

g

In view of the results above, we make the extension of the
algorithm given previously as follows:
let uy be arbitrary
E | 6(u,) = VE()

P, = 'G(“o)

Having obtained u. p, and VE(un). the iteration is continued accord-
ing to the expressions below:

Ynel = Yp * Pn (3.6)

where @, is the smallest positive solution & of (G(uann).pn) = 0,

6uy,,) = VB, ) (3.7)
(G(“ml)'r(“ml)pn) (3.8)
n = T Flu_Jp )
3.9
Ppay = 'G(“Ml) 4 pnp n e

To determine the value of o that satisfies the equation
(G(un*apn).pn) = 0 is a difficult task in gemeral, but we will make
the following observations.

Jemma 3.5. let D be & convex region in V containing u® suck
that F(u) is positive definite. Then E is a convex functioral or J.

Proof: Suppose U, € D, then by convexity of D,

17
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tu1+(1-t)u2 ¢eDfor 0< t £1. The rest follows immediately from
Equation (3.5) and the fact that the weighted sum of the squares is
greater than or equal to the square of the weighted sums.

Lemma 3.6. If E is a convex functional on a subset W of V, then
{u:B(u) < M, M being a positive conatant} C W is convex.

Proof: E(tu;+(1-t)u,) < tE(u,)+(1+£)E(u,)

<M
vwhich implies the assertion.

As the consequence of the above lemmas, we have the following
result.

Theorem 3.7. If F(u) is positive definite, then the value of «
that minimizes E(un+upn) coincides with the value of o that satisfies
(G(un+upn).pn) = 0.

We have thus reduced the problem of finding the solution to
(G(un+apn).pn) = 0 to a one-dimensional minimizatior problem.

Theorem 3.8. Suppose that F(u) is uniformly bounded and
uniformly positive definite in Q, the closure of {u:E(u) < E(uo)} .
For the sequence {un}generated by Equations (3.6) to (3.9), {G(un)}
converges to zero.

22225: Since F(u) is uniformly positive definite in Q, then
there exists positive constants m and M so that 8 < mI € F(u) < MI,
where I is the identity operator, and 6 is the null operator. Let o,
be the value of o that minimizes E(un+apn); then (G(un+apn).pn) =0

and consequently

18
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m(“a”npn)"ml) > m(“uwn’n)’o(“nwnpn)’pn)

= [l6(u +a p )| 12

= (ugrop,)| = ~(Glueap,)p,)

= i'ﬁ(\ln)"a

2
%;; (%Wn) - a(“nmn)pn‘pn)

<Mllp |12
whenever u vop, is in Q. Since

g% (“nmn)' =

i

therefore
aMip | 12 > [1atu)! 12

From Equation (3.9) and the fact that the consecutive elements in the
sequence {pn)m F(u)-conjugate thus

ml 15,12 < Ml la(u )12
and o, 282, From
Eluy+ap,) = By Jeedalu,),p,) + -';- (G(uy+tap )p,\p,)
for some t ¢ [0,1), for o< o,

Blug+em,) £ B(u )-al|0tu,)112 + § o) 1p |12
2 vdod ' 2
£ E(u)-el |0(“,)|| + -§ - llo(u‘)ll

. o




In particular, consider o = m/M, then

‘(“MJ.) = I:(“n 5 ﬁ pn)
S B(,) - By 1ow11® + § 55 Jlatw,)11?
S E(u) - %:'.F Hotu )12

Therefore, {J(un)} is » monotonically decreasing sequence, and
hence convergent with the assumption that E(u) is bounded below.
CE(“ml)'E(“n)}" O as n o0 implies that HG(un)ll «0asnex.,

As a consequence of the uniformly positive definite property
of F(u) in Q, and supposing that Q is compact, we then have the
following result.

Theorem 3.9. The sequence {un}convorgoa to a unique element
u* in Q, the solution to the minimization problem.

3.4 Remarks
(a) In finding the value of o that minimizes E(unmn). we may
use the expression « given in the linear case, namely,

(G(un) .Pn>

R TCI A R (3.10)

as a first order approximation to guide the initial search. The
quantities p , G(un) and !‘(un) are already availadble in the
computational process, thus the evaluation of & does not involve much
work. For most problems, it is expected that this approximation would
get better as w, gets closer to u*, for then the vectors would de
closer to mutually F(u®)-conjugate.

ol ot N M e e

st s i




(b) Theorem 3.8 indicates that it is desirabdble to select the

initial estimate of the solution “o such that the second Frechet

derivative of E at uy is uniformly bounded and uniformly positive
definite. We may use this fact as a guide to select the initial
approximation.

(c¢) 1In optimal control with state variable constraint applica-
tions, the set of admissible controls (this term will be made precise
later) in general will not form a linear subspace nor even meet the

convexity hypothesis in the discussion above. For the problem in

Section VI, the admissible control set possesses the necessary
conditions being convex, while for the problem in Section VII it does

not. The modifications made to obtain convergence in computation to

the desired solution are presented in detail there. The convergence
is along the expanding sequence of sets {Bn n Q}where Q denotes the
set of admissible controls.

(@) 1f Bn is set equal to zero in each step, the direction of
search P, would be along the negative direction of the gradient of E
at L and if o is selected so that the performance functional is
minimized, then this is the well-known method of steepest descent. It
is worthy to note that in the method of steepest descent, the
performance functional is not minimized in a sequence of expanding
subspaces as it is in the conjugate direction methods.

(e) At any step of the iteration process, we can start anew with
only a small amount of labor involved, keeping the approximation last
obtained as the initial estimate.

(f) Other variations of the conjugate gradient algorithm when

21




F(u) 4s independent of u may be found in the papers of Hestenes and
Stiefel (7], (8] vhere the development 1s presented in great detail.
SECTION IV

THE CLASS OF CONTROL PROBLEMS TO BE CONSIDERED

Our ultimate goal is to apply the technique develope in the
previous section to solve the class of control problems which we form-
ulate below. Supoose that the dynamical system is governed by the
differential equation

dx
== f(x,x)
x i

(4.1)
where x is a real n-vector for each t, called the state of the system;

u is a real m-vector for each t, called the control vector; and f is a
real n-vector for each t, that is twice continuously differentiable in
its arguments (t will be interpreted as time with values in Eu). Let
g(to) be the initial state of the system, and let it be desired to
transfer the system from the given initial state to some final state
lying on a smooth hypersurface

v[g(tf)] -9 (4.2)
where the terminal time tf is not fixed, while the states are confined to
whithin a closed region in " given by the inequalities

gk(_zg <0, k=1,2,...,N (4.3)
where g, is an m-time continuous differentiable function of x. We will
callla control u an element in the Hilbert space of piecewise continuous

functions on [to ’ tf] with inner product defined as

GB. denotes an m-dimensional Euclidean space

22
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<“1'“2) = It ul(t)ua(t)dt
o

admissible if the corresponding trajectory in E® does not violate the
state constraints above for all t ¢ [t o'tr]' Denote the class of
admissible controls by Q. Let the performance functional be
te
E(u) = w{x(t,)] + J L(u,x)dt A (4.4)
t

©

or alternatively as in the formulation of Mayer,
E(u) = ﬁ[x(tr)]

a function of end values of the states, where x(tt) is an augmented
(n+l)-vector. In the following x will be used to denote either the
n-vector or the augmented (n+l)-vector without further specifying
whenever the situation is clear from the context.

The problem's objective is to find the control u in Q that
minimizes the performance functional while satisfying the conditions
(4.1), (4.2) and (4.3). Ve will make an assumption that there exists
& unique solution to this minimization problem,

snterse
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SECTION V
COMPUTATIONAL CONSIDERATIONS

5.1 Nomenclature

For each control u in Q, there corresponds a trajectory in .
It may consist of two types of arcs. The portion of a trajectory in
which the states satisfy

g (x) <0 kali2yece\N (5.1)
will be called an interior arc, and the portion that satisfies

gk(x) =0 (5.2)

for some k, k=1,2,...,N will be called a boundary arc. A trajectory
may comprise entirely a boundary arc, an entirely interior arc, or a
combination of interior arcs and boundary arcs as shown in Figures 5.1
to 5.3.

Terminal surface #(x) = 0

Figure 5.1. Trajectory comprises only boundary arc
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Constraining surface
Bk(l) =0

Trajectory
Terminal surface #(x) = 0

Figure 5.2. Trajectory comprises only interior arc

Exit corner

Constraining surfree
g (x) =0

Trajectory
Terminal surface %(x) = 0

Figure 5.3. Trajectory comprises interior arcs and boundary arc
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The trajectory corresponding to the control u® ¢ Q that minimizes the
performance functional is termed the optimal trajectory. Consider

tf 2 to' i.e., time runs forward. The smallest value of t, say tl'
for which x(t,) lies on one of the constraining surfaces gk(x) = 0 is
called entering time, and x(tl). the entering corner. The largest t,
say t,, for which x(t.‘,) lies on the constraining surface gk(x) =0 is
called exit time, and x(tz). the exit corner. For simplicity in the
discussion below, we will consider only the cases in which the optimal

trajectory has at most one entering corner.

5.2 Control on the Boundary Arc

For the periocd t ¢ [tl.tzl along the boundary arc, the states are

interrelated by

sk(x) = 0 5.3

It follows from the fact that along the boundary arc, the constraint

function must vanish identically, which implies that
ad
—-§ =0, §=1,2,c.0 (5.4)
dt

The first time derivative of g has a very simple geometric interpreta-
tion. It states that the boundary arc is tangent to the hypersurface
g(x) = 0, or normal to the gradient of g. That is,

* = (VCO %) (‘.5)

The control u will be determined according to (5.5) if u appears

'FII tvo or more constraints are involved for t ¢ [t,,t.], the argument
is similar, and the subscript k on g will be droppdd £n subsequent
discussion.




explicitly in the expression. If it does not, we may consider the
ucond derivative or higher derivatives so that u will appear explicitly
in —-Q = 0. If the system is controllable [15), the existence of a
-nm integer N, the order of the derivative of g for which u appears
explicitly is assured. From (5.4) in particular for t = t,, ve have

glx(t,)) = 0 (5.6)

o) (5.7)
[x(tl)] =0 3'1. -.-.N-l

at

It is worthy to note that Equations (5.6) and (5.7) along with the
control u satisfying

N
d€-0 (5.8)
at

imply that
J
£8.+0. . 350,10 00s (5.9)
at

for all t ¢ [¢,,¢,].

We will make the necessary assumptions such as g has no singular
point, i.e., Vg(x) £ O, to permit a possidble unique solution for u in
terms of the states in (5.8). Actually, we need only to make such
assumptions along the optimal doundary arc. But from the computatioral
point of view, in particular using the conjugate gradient technique,
since we have no advance knowledge of the whereabouts of the boundary
arc on the constraint surface, the above provisions are necessary.

5.3 The Perturbation Equations

Suppose that u® ¢ Q is the optimal control of our minimization

problem, and that x" is the corresponding optimal trajectory. Consider
27
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u = u*+6h ¢ Q, vhere 0 is a real number and h a piecewise continuous

function. let
x(t) = x*(t)+0s(t) (5.10)
be the trajectory generated by u. It follows from (5.10) that we have
dx(t) _ dx°(t dz
T'_dé"z”"&'{’ (5.11)

Since x is a solution to (4.1),

1"%—1 = t{x(t),u(t))

= f{x*(t)+0z(t),u*(t)+an(t)]

= tlxe(e) ue(8)] + $51, ex(t) + 35| n(t)vo(0) (5.12)

where §§ is the Jacobian matrix of f with respect to x, %é is a row
vector. The symbol |, indicates that the quantity is to be evaluated
along the optimal trajectory. It follows then from (5.10) and (5.12),
and ignoring the factor o(8) (this will not alter the ultimate outcome
when the limit of © approaches zero is taken), that z is a solution to
the linear differential equation

L.+ Eln (5.13)

l(to) =0.

On the boundary arc, the control and states are further subject to
N

= O. Denote -:-’ by G.
t

[}

o

T ———— . a




alx(t),u(t)] = alx*(t)+02(t),u*(t)+en(t))

o

= G(x*,u*)+® (%-:-]..z) + g%'.ﬂhw(ﬂ) (5.14)
g Again, ignoring the factor o(@) we have
@3l.02) + R £5.15)

SPHBRPR A Rh T i R SN, S

If g-gl, £ 0, then it follows from (5.13) and (5.15) that

-1
Tl - 3L &)L (5.16)

on the dboundary arc.

S.4 The First Frechet Differential of the Performance Functional

Assume that the performance functional E as defined below

satisfies the conditions in Theorem 2.1, then we may evaluate its

Frechet derivative by formula (2.3), and ultimately obtain the gradient
of E. Let A be a piecewise differentiable n-vector-valued function of

t as yet unspecified. We will call A(t) a costate vector. Let

H(x,A,u) = (A, f(x,u)) (5.17)

i and call the scalar function H the Hamiltonian of the system. Treat-
| ing the conditions (4.1), (4.2), (5.6), and (5.7) as constraints,

e

ey

consider the performance functional E at u = u*+6h ¢ Q.
te

[RGx A -0, $ONt (5.18)

°

E(u) = £X(tf)]ﬂ[x(tf)]*(u.S[x(tl)D +J
t

where u is a constant N-vector and

" e SO N 7

29




e — -

[ olx(ty)] ]

slx(t,)] = am‘n (5.19)

N-1
H:(tl)]J

(at

for convenience. Making expansions about the optimal trajectory,

Ax(ep) = Mx(e)] + Gluaxteddy + o(®) (5.20)
o{x(t.)] = Wlx*(t23)] + (§1l ax(t)), + o(8) (5.21)
£ b 4 x'e* tt
sx(t,)] = sCxe(ep)] + $3 oy () ¢ o(0) 5.22)
For the functional E at u®, we have
t‘
4 .
E(u®) = ﬁ[x°(t;)]+0[x°(t;)1+(u.stz°(ti)) +j [H(x‘.\‘.u‘)-(\‘.%xr)]dt
t
(]
(5.23)
Therefore,
B-2") = Gfluvax(e), +GHandxe))y o, ?;l.tl)ax(cl)
te
+S [H(x, A, u)=H(x*,\*,u*)-6(), j‘-’;’)]atm(e) (5.24)
t
(]

To take into account the possible discontinuities at the entering and
exit corners, the above integral will be written as three integrals
over the intervals [ toety)y (8),8,) and (t,,t, J. After integration
by parts is performed, (5.24) becomes

30
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3 3 3s
E(u)-E(u®) = (sél..dx(t))t;(sﬂ..dx(t))t;(u. I, ey

9 1l
. b
- - d\ oH OH
+0(A(t)) .3(t°))-9(\(t1) 12(t;))+0 S%[( 12)+ (=] ..2)0 a—ul ‘h]dt
t2

+8(A(£7),2(£7))-8(A(£3),2(£3))+0 Xt, {<°:.z>+<§-§u_.z>
1

5
. g-ﬂ.{'[g%] l.(gf-(! o) Jat

t

f 3
+BOM(ED), 2(E3))-8(A (¢ ), 2t ))+0 L,[ Grre )+ Gal 12>+ 35 nlae
2
+ o(8) (5.25)
But ax(ty) = Bz(tj) - -g%‘(tj)wd + o(8) (5.26)
vhere Tj = td'ti s J=1,2,¢
and 2(t,) = 0
Thus
ax(t.)
E(u)-E(u®) = (gel.t +'§§|.t -l(tf).dx(tf))+(k(tf), ._EEE. Tf>
f £
e . x(£3)
+(A(£5)-A(2,) ax(£,))-{A(t,)y —gz= 7,)
dx(t3) ax(t])
+A(3), =m T )=(A(E}), —&L '1)*(%’37'% ueA(])eA(E]))

1

i
+0 St Lo+ @El oe 381 nlee
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;
te

+0 St+[(g%.z)+(g-§|‘,z)+ g—g—l.h]dt + o(9) (.27)
2

We are now going to impose the following conditions on the costate ).

(a) Demand that A be a solution of the differential equation

%%,,g%: of (5.28)

for t ¢ [to.tl) and t ¢ (tz.tf].

(b) On the boundary arc, for t € (tl,tz). require A to satisfy

-1
ar _ af 3f . \r3Gy L 3G _
Gl Rl u')‘)[Su] o = © KEaw

(c) At tys t, and t, demand that

AMED) = A(t]) + S| w (5 30)
21

P =03, (5.31)
Y L |

A(E3) = A(t3) (5.32)

gD =0, (5.33)
% b

Mt = $e,) « e, (5.34)

?'I‘ho symbol | after the quantities gﬂ’ etc. will be deleted
henceforth. * " ,.
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Equations (5.31) and (5.33) indicate that the Hamiltonian is

continuous at the entering and exit corners, and Equations (5.32) and

(5.30) show that the costate is continuous at the exit corner while it

is discontinuous at the entering corner with a Jump equal to ggl Be
t
With the above conditions, the Frechet differential is 1

t tf

1
: , G(u*)n = St g% hdt + St 5 g% hdt (5.35)
E ] ° 2

HHONTATTAIIN S g e s, DAY

and consequently, the gradient of the performance functional

VE(u) = g%(x.x.u) (5.36)
for t e [t ,t]) and t ¢ (t;,tf'l.

5.5 The Second Frechet Differential of the Performance Functional

Suppose that for the control u = u*+6h ¢ Qs the corresponding
trajectory is

x(t) = x*(t) + 62(t) + 6%u(t) (5:37)

S R T

‘ instead of (5.10), where 2z again satisfies the differential equation
1 (5.13) with z(to) = 0 and w(to) = 0. In view of (5.37), let us now

il

re-examine the expression (5.24). The expression (5.20) becomes

T S

2
Ax(t)] = fxo(63)I0@E0t,), axte )+ Bax(e,), :—xg(tf)dx(tf))m(ez)

(5.38)

where ;
3. > dx(t,) |
dx(t,) = 62(t,) + 6%(t,) + 0 g T, (5.39) 3
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| S8imilarly, expressions (5.21) and (5.22) become

-
¥x(t ) Tl (£3) 1ecGhCe ), (e D) é(ax(t,).:-xg(z,).ax(t,»»(e?)

(5.40)
and
2
STx(t,)1a80x°(¢3) ] §3(t, dax(t, ) §<ax(t1).§;§mt1>>+o(ea> (5.41)
The integrals in (5.25) become
e T ? ax(¢])
- St (A.-&-(Ohe w))dt = -O(R(tl).dx(tl)+ —r 1'1)
(o]
t, t,
1 1
+ ej A 2yat + ezj A wat + o(62) (5.42)
‘I:O‘a.E 5 tolag 2 %
t +
£ dx(t.)
- St+(l.-g-€(h+02m))dt = O(A(£3), ax(t3)+ —mpie 1)
2
ax(t,) te te
- 8(M(t,) dx(t,)e —pde v )40 St*<§§.z>amz Se,o}}.u»u
2 2
+ 0(0°) (5.43)

- +
dx(tl)

Stza"mﬁ» oA (tY), ax(t,)) )
- t; ']'l'( +0%w))at=6( tl.dxtl)+—-u—-rl

ax(t,) % t

- O(A(t5),dx(t,)+ gl -rz)wS J%.z)dt#ezl LG wateo(e?)
¢ t
1 1

(5.44)
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BCx, Ay u)-BOx* A% u*)=0G3E, 2)+6%(3E, ) oo B )

[ ][22 a amy | [ ]
sl gl
2
*30‘ , o(6%) (5.45)
. g_(an) 3%y .
L oF i

From Equations (5.38) to (5.45), in view of the conditions imposed on

the costate A and that %% = 0 along the optimal trajectory, we have for

the second Frechet differential

" RIS  s aliede cle i SEa
A A 3 W A TSR A M S o T

2 2
9
(h,F(u)h) = (z(tt).lg 2(tg)) + <z(tf).—§ z(tf))
ox ox
2
s % fls %;g' g?(g'g 3
f +(2(t ).—-5 z(t ))+S + dt
: t ¢ h g_{an) 2 h
: o 2 xioul o2
£5.46)
5.6 An Approximation for the Hessian
The gradient of the performance functional follows immediately
from the first Frechet differential. However, some further steps are
necessary from (5.46) to obtain the Hessian of E which is to be used
in the conjugate gradient algorithm. Recall that z is the solution
to the linear time-varying differential equation
dz af df
Al RS R (5.47)
for the unconstrained region given by
35
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t

g(t) = L(t.tj)s(tj) +S L(t,T) %é(‘r)l‘h(v)d'f (5.48)

t

where L is the fundamental matrix and t, = to.t;. 2(t)) = O, but

3
z(t;) as yet is not known. Writing (5.48) as

z =Th (5.49)

T
(5.50)
v-[3]

and letting

Formally, we have

3% 2 W 3 |2H
|| ==l R 11
() = wh' wh
nl 12 ‘ax 3%y . a lau 3%y
Wil 2 i) 32
2% 3 lan' $
« (o W e wh
3 (3H| %M
=l o2
(5.51)
(z(t )lzél 2(t,)) = (‘Ih.gfé Th)
t'ax o« I ax tf
2
- (0, 28 m) (5.52)
; ;:g te

and similar expressions for the other factors in (5.46). The second

¥ # denotes adjoint.
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Frechet differential now becomes

2 2
(&, PR = (n,1¥ 34 mt‘ + (0, 2% m)
> 4
t

; ax te
F 2

w + (h.’l" 3 8 s

\ 1 to

32

s t d“H OH

(" o &5 = | \

" dt :
| t, N\ |2 L aH, %K (5:53)
x|\ ;’5

from which we can obtain the Hessian of the performance functional.
Since (5.47) describes a time-varying linear system and the initial
state is either at rest, z(to) = 0, or z(tz) which is small, (when u
is sufficiently near u®), a "small" h will genoutc a "small" z (the
converse is not necessarily true) and the term <h'_3 h) is the "most"
dependent on h in (5.53) [15]. Furthermore, 2—5 :la positive definife
(15], and therefore, by continuity there oxiata a region about u‘ for
which -Eg» is positive definite.

In the discussion in Section III, Theorem 3.8, the only require-
ment on F(u) was that it must be uniformly positive definite in the
neighborhood of u® to assure convergence of the iteration process
(assuning also that the controls in this neighborhood are all
admissible). Hence we may consider constructing a set of search
directions {p }oonjmto with respect to lz-g. or locally conjugate
to be precise since --2 depends on u in pnonl. This simplification

A T P SR A T IR A S AT
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reduction in computation time and programming,

provides a considerable

and we will use “his approximation below in our computations.

5.7 Computation for the Costate

In order to obtain the Hamiltonian at the nth iteration on which
the gradient and Hessian are based, we must have the state variabdble
and the costate in addition to the coantrol u, chosen for that iteration.
Since the state variable is continuous and the initial condition is
| given, solving Equation (4.1) is a straightforvard problem, provided

the estimated quantities tl. tz and tf are settled. We will elaborate
this point in the next subsection. On the other hand, the determina-
tion of the costate requires more considerations. Since the boundary
condition for the costate is specified at the terminal time t, and the
costate is continuous at the exit cormer, thus A(t) for t ¢ (t;.tf]
may be determined simply by solving the differential equations (5.28)
and (5.29) backward in time using the latest estimated coatrol and
state variable. At the entering corner, when t = tl’ the costate may
be discontinuous. In principle, it is possible to determine X(t;).

Wy t), & total of Nen+l unknown quantities, from Equations (5.30),
(5.31), (5.6) and (5.7) as long as these equations are independent.
Since in any stage of the iteration process, the time at which the
trajectory reaches the constraint surface tl is in general not equal
to ti. hence an exact solution to the above quantities is not really

| essential provided that some means are taken so that these quantities
would converge to the desired values as the process progresses.
Initially, a trial and error technique may be used to obtain an
approximation to these quantities. Depending on the problea at hand,




frequently some intuition as to the physical nature of the problem may
Serve as a guide to the guess and the method by which to improve the
estimates at each step. This is the most difficult part of the
computation and also one of the most time-consuming portions of the
iteration process.

After the estimate of \(t;) is selected, the costate in the

T
e s ol B A

remaining portion, for t ¢ tto.tl). may again resort to solving the
differential equation (5.28).

5.8 Entering Time and Exit Time

Since the control program is updated at each step according to
Ypel = Yy * AP, (5.54)

the new trajectory may reach the conatraint surface sooner or later
than the previocus iteration. In other words, the entering time in

general varies v}th each iteration, and it is dictated by the control

chosen. If tin) is larger than t{ml). there is no problem. However,

vhen the opposite is true, then some extension on u . must dbe made
for the time interval (t§°’.t§nﬂ) ) such as

%*1&) = un(ti“))

or some convenient extrapolation based on un(tin) ) and the rate of

change of u, hear t{n). When the estimated solution is near the

optimum, signify by relatively small values of VE(u,), & more accurate

|
determination for the entering time and the entering corner being

3 t{" denotes t, for the mth iteration.
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desirable (also the terminal time and terminal state). Some refine-
ment in step size "dt" in solving the differential equation near t1 is
necessary in order to minimize rounding errors.

Concerning the exit time, as it was observed by McIntyre and
Paiewonsky [16), the conditions for leaving the constraint surface
cannot be translated into mathematical statements that can be used in
a computing process. Again, tz must be estimated and an improvement
made in the estimation according to some means such as to increase t2
vhen the new control causes the trajectory to violate the constraint
surface and decrease tz otherwise. The amount of suitadble change
involved depends on the problem at hand. Often too large a change
may cause the trajectory and some subsequent trajectories to deviate

greatly from the optimal, while meking too small changes would waste

unnecessary ce-pnting time.

5.9 Determination of Optimum o,

It is convenient to divide the state variable constraint problem
into three parts in the following discussions, and designate them as
Region I, for t ¢ [t ,t,): Region II, for t ¢ [t,,t,]i and Region III,
for t ¢ (tz.tf]. For Region II, the computation for the optimum LR
the value of & that minimizes the performance functional, or step size
in the search, is not involved since the control on the boundary arc is
not free to vary. For Region III, the optimum a, »ay be determined by
using Equation (3.10) as a guide for the search and to compute the
performance functional for selected values of a. A quadratic

interpolation may be employed to improve the effectiveness of the




i

search and to reduce the number of values of  needed to be considered.
The computation for the optimum @ for Region I needs further attention.

g First of all, due to the presence of the constraint conditions (5.6)

? and (5.7), the values of o to be considered must be selected in such a

2 way that u, +ap are admissible controls. This is a one-dimensional
minimization problem subject to some side conditions. It is desirable
to limit the number of values of o to be considered so that the

computational time is reasonable while maintaining a tolerable accuracy
on the approximating solution for each iteration. Secondly, the
evaluation of the performance functional is not as simple as in the
case for Region III since the value of d[x(tf)] will not be known
until the complete trajectory is computed which includes Region III
where the trajectory is as yet to be evaluated. Some equivalent
condition at t < t, instead of p{x(tf)] sometimes may be used as in
the re-entry vehicle problem below, or as in the minimum time problem

selecting the optimum «, to be the one that is nearest to the value of

o Equation (3.10) provided, while satisfying the condition that

u, + ap is an admissible control.

5.10 Summary of Computational Steps
The following diagram shows the steps in the computational process.

Because of the lack of advanced knowledge of the initial values for

¥y 'o and P, Some convenient values such as zeros may be used.

S.11 Substitution of Penalty Function for Constraints
In the state variable constraint control problems we have

discussed above, most of the hardships in computation arise from the




Figure §.
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constraint requirements (5.6) and (5.7). The penalty function

technique is designed to alleviate these difficulties. Instead of
attacking the problem directly, it reformulates the control problem
with state variable constraint into an unconstrained problem wherein

the original performance functional is augmented by a non-negative
penalty term, a function of the state variable x which increased in
value with trajectories that violate the state variable constraints.
By selecting a suitable sequence of non-negative penalty functions in
the iteration process, it is conceivable that in many cases the
desired solution for the original problem would be achieved as the
limit of the sequence of approximating solutions obtained in the
iteration. Indeed, this technique has been given rigorous justifica-
tions by various investigators, Moser [17], Russell (18] and
Okamura [19], just to mention a few. For most penalty functions the
intermediate trajectories usually violate the constraints. That is,
some portion of the boundary arc is approached from outside of the
constraint set.

An adaptation of this technique to suit the conjugate gradient
computational method is as follows. A new performance functional is

given by

E'(un) = E(un) + jc m(x,n)ds
n

= ﬁtx(t,)] + j n(x,n)ds (5.55)
c

vhere (!n is the trajectory under the control u, and the non-negative




penalty function m as a function of x has the properties that for x
vithin the constraint set ™ has small values relative to ﬁ[x(t,)). and
for x outside of the constraint set w has large values that increase
with the distance (with some suitable metric) away from the comstraint
surfaces. And as a function of n for a given x, w is a nonotonicany
increasing function for x outside of the constraint set and conversely
for x within the constraint set. The gradient of E' in general does
not approach zero as the optimum solution is near, due to the added
penalty term m(x,n)ds. Therefore, some other means must be uged to
signal that thcnoptinun eoiution is near in the iteration process.
Comparison of the values for ﬁ[x(tf)] in consecutive iterations often
fail whenever the performance functional has a '"flat bottom'" feature.
Often direét comparison of Utk with u, is necessary, such as evaluat-

ing the quaatity

k

2 1
' 'un+k-un' ' = Z an+J_1<Pn+J_1 Qpn*J-l) (5,56)
3

To avoid instability in.compntation which causes the intermediate
trajectories to swing far from the optimdl trajectory and may sometimes
cause the approximating solutions to diverge, the penalty function
cannot be too "harsh." On the contrary, the solution may have a very
slow convergence rate which would make the computation inefficient.
Some compromise must be made so that each iteration brings the
approximating solution closer and closer tn the optimum at some
reasonable rate. After the selection of the pemalty function, the
computational steps are the same as the one given above in Figure 5.4
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for the constraint probles except for the removel of the blocks
concerning Regions II and III plus scme obvious modifications.
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SECTION VI
A MINIMUM DISTANCE WITH FORBIDDEN REGION PROBLEM

6.1 Problem Description
As an application of the foregoing discussion to the state

variable constraint problems, let us now consider a problem of moderate
computational difficulty so that the features of the conjugate gradient
method can be observed with greater clarity. Suppose that among the
planar curves joining the point (4,1/4) and some point on the parabola
with its vertex at the origin while avoiding & circular region as
shown in Figure 6.1, it is desired to find one that minimize the length
of the curve. The control version of this problem would be to find

the time-optimal control for a piecewise smooth path satisfying the

specified conditions traversed at a constant speed, where the control

Trajectory

X2

(4,1/4)

Terminal surface

2
x1+x2-0

Forbidden region

Figure 6.1. Geometry of the minimum distance problem
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variable u is taken as the angle formed by the tangent to the path and
the negative x,-axis (see Figure 6.1).

This problem will be solved using the conjugate gradient method
two wvays. First, the computation will be carried out considering the
. constraints directly and then employing a penalty function to convert
; ‘ the constraint problem to an equivalent unconstrained one. Finally,

E another computational technique, the popular steepest descent, is

; studied with the same considerations given as in the first case of the
E @ conjugate gradient method.

The performance functional to be minimized is

E(u) = #lx(t,))
= -XB(tf)

te
.- j at (6.1)

t

The system dynamics c&a be written as

-:-czl-s-keosu

bt
I - k sin u (6.2)

dx

-

where the constant k will be taken as unity in the sequel for
simplicity. letting t° = O, the initial conditions are




81(0) = b
XZ(O) = 1/4 (6.3)

x3(0) =0

6.2 Formulation for Numerical Computation Using Constraints Directly

The Hamiltonian associated with this problem is

H(x,\,u) = -xl cos u + Az sin u + A; (6.“)

and therefore the costate equation along the interior arcs, or Regions

I and III, is
.g.} =0 (6.5)

In view of Equation (5.34) and that g(x) = Xy and ¢(x) = xlﬂtz

21 at

the terminal time tf

Kl(tf) =1
A (te) = 2x,(t,) (6.6)
k,(tf) = =1
According to Equations (5.36) and (5.53), we have for the gradient and
Hessian of the performance functional, respectively,
VE(u) = A, sin u + A, cos u (6.7)

1
F(u) = A\, cos u =1, sin u (6.8)

On the boundary arc, or Region II, the control is required to
maintain the trajectory so that it will lie on the circle
“1'2)2 + xg = 1, hence
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u(t) = cos™? xz(t)

u(t) = m:"'[xl(t)-z] (6.9)
Using Equation (5.28), the costate equations for Region II are

d\l
I = -cos u(11 sin u + *2 cos u)

dla
I = ein u(kl sin u + X, cos u) (6.10)

da

=0
By Equations (5.30) and (5.31), the jumps of the costate at the entering
corner are governed by

A (8]) = A (8]) + w 2[x, (£7)-2)

A(tD) = A(t]) + uax.(th)
2 "1 2 1 2 1 (6.11)
- +
.. ax (4]) -, ax(¢]) A O
M(ty) —gp= * A (%)) === N (t)) ——
ax. (t])
+ 2' "1

and from which

Xl(ti)t-xz(tl)wol u(ti)] + kz(tI)[xl(tl?-z-sin u(t;)]
B eummm— cep— s ey —— (6012)
2{(Tx, (¢, )-2Joon u(t])-x,(t, detn u(t]))

23

It is worth observing that in the iteration process, precaution must
be taken to avoid overflows in computation since the denominator of
(6.12) may vanish when the approximating trajectory is tangent to the
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circle at tl. When this occurs, the numerator vanishes also. In view

of the limiting processes involved in Equation (5.25), we may therefore
apply L'Hospital's rule to Equation (6.12) and obtain

m -'é [-xl(t;)lin u(t;) - kz(t;)coe u(t;)]

After a control is chosen, and the initial conditions (6.3) are given,
the differential equation (6.2) can be solved in a straightforward
manner. To be able to evaluate the gradient and the Hessian of E, the
costate in Regions I and III is needed. The values of the costate in
Region III are clear from (6.5) and (6.6). By solving (6.10) backwards
from t, to t,, we have kJ(t;). §=1,2,3. Through Equation (6.11),
Ad(t;). j=1,2,3 may be determined, and consequently the values of the
costate for Region I obtained.

The set of admissible controls Q consists of controls that produce
trajectories starting at (4,1/4) and terminating at some point on the
parabola x1+x§ = O avoiding the region (xl-Z)2 + xg <1, Ifvand w
are admissible controls with corresponding trajectories C1 and 02 80
that the forbidden region is not in the interior of the region D
bounded by curves Cl. C2 and x1+x§ = O, then for 0 £ a £ 1, the control
av+(1-a)w would be admissible since the resulting trajectory lies
entirely in D. Hence Q is convex, and according to Theorem 3.8, if
the control selected for the initial iteration is in the neighborhood
of u*® within which the Hessian of E is positive definite, the

convergence of the iteration process is assured.

6.3 Formulation for Numerical Computation Using Penalty Function

Let us now examine what modifications must be made when the

L0




penalty function is introduced so that the problem with state variable

constraint becomes an unconstrained problem. Let

ﬂ(“n) = 001[(!1'2)2’12]‘(‘) (6-1})

vhere

3+n, 1<£n<10 |

A(n) = ( 14+2(n-10), 10 n< 20 |

1 | 34+b(n-20), n 220 |
~

As n becomes large, the contribution to the performance functional
along the trajectory exterior to the circle is small, and n(x,n) is
positive everywhere except for one point, x = 2 and x, = 0, which is
zero. Hence m possesses the desired characteristics stated in the
previous section.

The new performance functional to be minimized is

E(u) = -xs(tt)

t tf

b ¢
= - ( dt + j n(x,n)dt (6.14)
Jo 0

The equations describing the system dynamics (6.2) remain the same |

except for the last expression which becomes

;;2 = 1 - n(x,n) (6.15)

The initial conditions for the states are agein given by (6.3). The
new Hamiltonian is

H(x,\,u) = =\, cos u + A, sin u + A,[l-w(x.n)] (6.16)

Sl
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and the costate equations are

e QN

®"" Uq

aa

“3 =)y %"x—z (6.17)
a

=

with the terminal conditions as given by (6.6). The gradient and the
Hessian are again given by (6.7) and (6.8). Since there are no
constraint conditions involved, the computer program becomes
considerably simpler. Any piecewise control having the corresponding
trajectory satisfying the initial and terminal conditions is an
admissible control, and Q is again convex.

6.4 Computational Results
Many different estimated controls have been selected for the

initial iteration in the course of studies for computation as a
constraint problem and as an unconstrained problem using either the
conjugate gradient method or the method of steepest descent, but only
one is presented below in detail for each way of solving this problem
since the convergence characteristics are similar for any estimated
control for which the iteration process converges.
Treating the problem as a constraint problem, the following

initial estimates are used

u (t) --%t. ost<t,

u (t) = .1+.05 sin 10t, t, S t<t,

T PRSP ey




0, = 2.8 (see Pigure 6.2)

The change in 0, A0 is made according to the following:
(1) If the trajectory under the nev estimated control does not
violate the constraining circle in the kth iteration, thea

-l k<38
40 = -0l , 8<5k<15
-.0005, k>15

(11) If the trajectory under the new estimated control violates
the constraining circle as shown below, where A is the point where the
trajectory leaves the circle in the (k-1)st iteration and B is the last
intersection of the trajectory ck under the new control and the circle,

then
A6 = length of arc AB

Constraining circle

Figure 6.2. Trajectory C, violating constraining circle
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Treating the problem as an unconstrained prodblem, the initial estimate
vas

“o(t) = 1 - .“t

The fourth order Runge-Kutta method was used in solving the
differential equations with step-size dt = .01, except for the small
intervals slightly before the trajectory intersects either the terminal
curve x1+x§ = O or the constraining circle, where dt = .0002.

The computed results are shown in Figures 6.3 to 6.l1.
Comparisons are made between the different approaches of solution
whenever possible. In the following, whenever there is no mention as
to whether the solution is obtained by using constraints directly or by
using a penalty function it is understood that the first is used.
Figures 6.3 and 6.4, respectively, show the approximating controls
un(t) for various n computed by the conjugate gradient method and the
corresponding trajectories. The values of the performance functional
vs. n are given in Figure 6.5, and the gradients of the performance
functional as a function of time for various n are shown in Figures
6.6 and 6.7, Figures 6.8 and 6.9 provide some comparisons of the
conjugate gradient and steepest descent methods. Since the
convergence characteristics of the approximating controls and the
corresponding trajectories in Region III depend mainly on the choice
of On or the exit corner, only their convergence characteristics in
Region I are considered. FMigures 6.10 and 6.11, respectively, show

the approximating controls un(t) for various n computed using the

penalty function approach and the corresponding trajectories.
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Figure 10. Performance Functional by Conjugate
Gradient Method
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Gradient of performance functional

Figure 6.6. Gradients of performance functional, Region I
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functional, Region III
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Control uk(t)

Figure 6.8. Comparison of approximating control sequences
in Region I by method of conjugate gradients
and method of steepest descent
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SECTION VII

MAXIMUM RANGE OF A REENTRY VEHICLE WITH SKIP ALTITUDE CONSTRAINT

7.1 Problem Description
Suppose it is desired to obtain an optimal angle of attack program

for a nonthrusting reentry vehicle so that its range is maximized for
some given initial velocity and position while not exceeding a certain
altitude limit once it has gotten below the limited altitude. The
altitude limitation occurs in many practical situations whenever
maneuverability of the vehicle is required since at high altitudes the
air is too thin to provide sufficient aerodynamic forces. The
parameters used in this problem will be selected to resemble a typical

real situation.

Constraining surface R lift
x, = 200,000 feet axis

Terminal surface
x, = 70,000 feet

Figure 7.1. Geometry of the reentry vehicle problem
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The earth will be considered as spherical and non-rotating. This

state variable constraint control pi-oblcn may be formulated as follows:

Let x be the range along the earth; x, be the altitude of the vehicle;

83 be its velocity; and x, be the flight path angle relative to local
horizontal. The constraining surface is

4 g(x) = x,(t) - 200,000 feet (7.1)

and suppose that the terminal surface is

#(x) = 70,000 feev - xz(t) (7.2)

SR A PN

The performance functional to be minimized is

) e

E(u) = ﬁtx(tt))
P (7.3)

where tf is the time when the vehicle is at an altitude of 70,000 feet.

The motion of the vehicle is given by the following equations:

-:-?-s-i—;%cosx“

dx
zggsx.‘,’aiaxu

(7.4)
-:;_2 = =(.274 + 1.8 ainzu)oxg % - g sin x),

dx
ﬁ-.Snthupxs%-%—cuxk-f‘%cux“
where

2
8y the local gravity = 32.2 ( w:—z-)




oy the atmospheric density = .00238 exp (-xz/zk.ooo) olngs/:t3

R, the radius of earth = 2.1 X 10’ feet
2

S = the effective surface in ft
m = the mass of the vehicle in slugs
Let toco and the initial conditions be
11(0) = 0 feet
xe(o) = 340,000 feet
(7.5)
3:3(0) = 28,000 feet/second

x“(o) = =.14 radians.

7.2 Analysis for Numerical Computation

The Hamiltonian associated with this problem is

H(x,\,u) = A [T’é“] cos x) + Azx3 sin x,

& AB[(.z?b + 1.8 ainzu)oxi 85 + g sin xu]

x
+ [.6 sin Zupx3 % - g; cos x) + F:% cos xu] (7.6)

and therefore the costate equations along the interior arcs, or Regions

I and III, are

dkl
| et

o SN Ay [(.274 + 1.8 sin®u)a® 3= p/24,000
T = lxscoaxa-?:;—)z- 27 «8 8in !,:9 '

+ 2g sin xu/(mx )] «+ 1 6 sin Zux3 ss p/2k,000

2g cos X, :2 cos X,
- (7.
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aa
-“2 = -11 cos x“/(].o-leﬂ) - xz sin x, + x}(. 4+1.8 a:lnau)px} S/m

g E&cosx, cosx
- lh .6 8in Z“p'!; *-—-:%{-—'*'1§:;;7

ax
Iii = Al(-r:%‘) sin x, - 12::3 cos x) + l33 cos X

g 8in x sin x
"‘4[ x}u_ 5 u]

2

In view of Equation (5.34) and that g(x) = -x, and ¥(x) = 70,000 feet -

xz. at the terminal time tf

kl(tf) = -1

AL(t,) = -1
£ (7.8)

XB(tf) =0
According to Equations (5.36) and (5.53) we have for the gradient and

Hessian of the performance functional, respectively,

E(u) = =\

3°x§ % (1.8 &in 2u) + A,‘gm3 % (1.2 cos 2u) (7.9)

F(u) = -139x§ 85 (3.6 cos 2u) - k,‘pr % (2.4 sin 2u) (7.10)

where an approximation has been made for the Hessian as discussed in
Section V.
On the boundary arc, or Region II, according to (5.4), we have
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g(x) = x, - 200,000 feet = O (7.11)

%Z = XB ‘in x" = o (7012)
2 dx dx
d g(x) 4

= sin x, + x % =0 (7.13)
J&:z- ﬁ n N 3 cos L W

Equation (7.12) implies that X, = 0, and consequently, it follows from
Equation (7.13),

1 dx x
: Tt_h = .6 sin 2\1:»:3 % - g— cos x, + F;— cos x,‘l =0 (7.14)
3 2 x“3o
Therefore, the control along the boundary arc is given by
;'f x2
us3d st g - gt /+60x% 5 (7.15)
L . J
and the motion is given by
S »
®T " T
dx
2
T -0
(?.16)
T2 = -2t + 1.8 staPupd §
=-\e . u/p 3 s
dx
w0

It follows from Equation (5.28) that the costate equations for
Region II are




R 28
T * 11x3 -(-;;2—)! - lst(om + 1.8 .inz\l)!}'s 0/24,000)

s b ¢
- l‘. [.6 sin Zux3 = 0/24,000 - ;;r&-x? + ?‘::)’]

+ (5 1.5 tan 2u - 4/x)(x5 32 0 .6 sin 20/26,000  (7.17)

+ xg/(R¢x2)2 - 2g/(R+x,)]
T2 = -A/(1+x,/R) 8 sin’ulox, 3
= =\, xZ/R + XB(.Z?‘O + 1.8 sin )“}5
- \k['6 sin 2up-§; + ;/x§ - 1/(R¢x2)]

2x
S
- (X3 1.5 tan 2u - X“/XB)[I-Z sin 2“”3 S + Fé;]

a, |
rpialinl o L,
By Equations (5.30) and (5.31) and the fact that x“(t;) = 0, the jumps

of the costate at the entering corner are governed by
A (£1) = A (£])
A (8]) = g + A (¢))
A3(]) = Aglt]) (7.18)
M (ED) = myxg + N ()

dx dx dx dx
2 4 3 4
A, | g + \‘. w' .= 13 ' . + \‘. F_' 4
tl tl tl tl
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It follows from the last two expressions that

[
xB(ttl.) ;l * ";sz, -
: e

¢ g l,‘(tl)
1

Y (?2.19)

x5(ty) 7! =
3

o as a function of the state and costate vectors is not explicit, and
a trial-and-error procedure such as the one described in Section V will
be used, From the pnysics of the problem, it is clear that in order to
minimize the drag force (the first term on the right side of Equation
(7.4)), and consequently the greater range the vehicle would travel,
it is desirable for the vehicle to make its flight at the limit
altitude oi 200,000 feet for some period of time, provided that it has
sufficient energy to return to that altitude after it has been below
200,000 feet once. This fact will serve as a guide in selecting the
initial estimate of the control in Region I.

The continuity property of the state variable implies that
x“(ti) = O which in turn implies that the admissible controls must
have their corresponding trajectories tangent to the constraining
surface at the entering corner. Consequently, the set of admissible
controls Q does not possess the same property as the problem
considered in Section VI, where the admissible set of controls is
convex. Moreover, it is true that every neighborhood of an admissible
control has at least one non-admissible control. We can justify this
statement heuristically as follows: If u is an admissible control,

then we can select a control v so that v(t) = u(t) for t ¢ [O,tl-G],
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§>0, and for t > tl-G select v s0 that the corresponding trajectory
is not tangent to the constraining surface (i.e., v is not an
admiesidble control). Since 8 is arbitrary, ||u-v|| may be made
arbitrarily small.

From the computational viewpoint it is sometimes advantageous,
such as in this problem, to relax the requirement that the estimated
control uw for each iteration be admissible. In other words,
computational time may be consideradbly reduced if the optimal control
u® is approached along a "path" whose intermediate "points" may be
nonadmissible conceptually as shown in Figure 7.2.

The set of
admissible controls Q

Figure 7.2. Illustration of the path leading to optimal control u*

Let us now make this statement specific. let the modified entering
time tl be the smallest t that satisfies either one of the following
two conditions

(1) xz(t) = 200,000 feet

ax, &
(11) X"(t) = 0 and T " 0

¥ The flight path angle vanishes also before the pull up.
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The adaptation of these two conditions to the computer program is
simple. Denote the set of admissible controls for the kth iteration by
Qk' and let

Q = \r,“:xlo(tl) < -’—l]('- and 200,000 - xz(tl) < 5.000/k> (7.20)

The sequence of admissible control sets as defined above approaches Q
as k - oo,

It is worthy to note that in Region I the problem of determining
@ that minimizes the performance functional is equivalent to the
problem of maximizing x} for a fixed Xy in Region II, thereby
eliminating the computation of the trajectory in Region III on which

the performance functional is based.

7.3 Computational Results

The initial estimate of the controls for Regions I and III and
the exit time té°) are

u (t) for t e [O.tl1 as shown in Figure 7.4

u (t) = .42 radians, t ¢ Eta.tf]

t§0) = 235 seconds.

The change in tz. At is made according to the following:
(i) If the trajectory under the new estimated control does not
violate the constraining surface Xy = 200,000 = O in the kth iteration,

then

- k<4
At =( =1 5skg8
-.5 k>8 [




G

(i1) If the trajectory under the new estimated control violates
the constraining surface as shown below where A is the exit corner in
the (k-1)st iteration and B is the last intersection of the trajectory
ck under the new control and the constraining surface, then

i distance between A and B
x,[ta ]

At

x2-200.000=0

Figure 7.3. Trajectory ck violating constraining surface

The fourth order Runge-Kutta method was used in solving the state
and costate differential equations with step sizes dt = 1 for Regions
II and III and dt = .5 for Region I, where greaater accuracy was
demanded, except for the small intervals slightly before the
trajectory intersects either the terminal surface or the constraining
surface where dt = .Ol.

Figures 7.4 and 7.5, respectively, show the approximating
controls un(t) for various n computed by the conjugate gradient
method for Region I and Region III. As expected from physical

consideration, the control program for the vehicle when it is above
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220,000 feet has only minute influence in the trajectory since the air
density is extremely small. During the ten iterations, no significant
changes occurred in uk(t) for the first 30 seconds, which corresponds
to X, greater than 220,000 feet, consequently the curve representing
ulo(t) for t < 30 may contain considerable amount of uncertainty. This
tact may be seen by examining the Hessian of the performance functional
in Figure 7.7 which has relatively small values for t < 30, since the
Hessian may be interpreted as weighting factors in the equations for
the determination of o and B in (3.10) and (3.8). The Hessian has
relatively large values in the vicinity of t = 55 which indicates that
the control program on the optimal trajectory during that period of
time is critical. The performance functional vs. n is given in

Figure 7.6, and it indicates that after the 8th iteration the changes
in the performance functional become very small in comparison with the
changes occurred in the earlier iterations. The computed results for
all the states after ten iterations are presented in Tables 7.1, 7.2,
and 7.3, and the costates are shown in Figure 7.8. The computed
results show 2 very close agreement with the optimality relationship
that

2A
u*(t) = % tan~1 (3;-;3-
-

as required by the Weierstrass condition.




Control uk(t)

Figure 7.5. The approximating controls, Region III
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The dymesi¢s of the maximum range problem
after 10 iterations, region I

TABLE 1

Time Range Altitude Velocity Angle
P_oconda) (miles) ( 10° feet) ( 103 ft/sec) (degrees) |
0 0.0 340.00 28.000 -8.0214
5 22.458 320.53 28.020 =7.9626
10 “&.95‘0 301.19 280037 '70%
20 90.049 262.98 28.051 =7.7491
25 112.63 244 .20 28.031 -7.6365
30 135.21 225.79 27.967 -7.4622
35 157.73 207.99 27.818 -7.1647
40 180.12 191.30 27.520 -6.6389
50 223.85 164.69 26.191 -4.3533
55 244,78 156.89 25.175 -2.5466
60 264 .89 153.47 24,127 - 64277
65 284,21 153.86 23.227 +96062
70 302.86 156.95 22.544 2.0435
75 321.04 161.54 22.053 2.6041
80 338.86 166.70 21.699 2.7499
8s 356.43 171.78 21.428 2.6317
90 373.79 176.51 21.212 2.4488
95 391.00 180.83 21.034% 2.2374
100 Lo8.07 184.72 20.885 2.0100
105 425,03 188.15 20.757 1.7740
110 441,90 191.14 20.647 1.5338
115 458.68 193.68 20.548 1.2920
120 475,38 195.78 20.460 1.0500
125 4k92.01 197.43 20.379 .80862
130 508.58 198.65 20.304 56854
135 525.09 199.45 20.233 «33703
140 541.55 199.86 20.167 .13610
144 4 555.98 199.96 20.111 .00001
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TABLE 2

The dynamics of the maximum range problem
after 10 iterations, region II

— Time " Range Velocity

[(t—tl) seconds]* | (miles) (10° ft/sec)
0 555.98 20.111
t S 572.33 20.025
g 10 588.60 19.938
g 15 60k .81 19.852
; 20 620.95 19.765
25 637.01 19.677
35 668.92 19.501
40 684.77 19.413
45 700.55 19.323
50 716.25 19.233
55 731.88 19.143
60 247 Lk 19.051
E | 65 762.92 18.959
g 70 778.33 18.866

W2 B ¥ e

f
The entering time t, = 14 .4,




TABLE 3

The dynamcis of the maximum range problem
after 10 iterations, region III

" Time “Range Altitude Velocity ight Path
(t-tz)' (R-Rz)“ Angle
(seconds) | (miles) ( 10° feet) | 10° ft/sec) (degrees)
0 0.0 200.00 18.693 0.0
50 148.50 198.90 17.776 - 0.20551
100 289.55 192.94 16.828 - 0.56930
150 422.13 183.95 15.663 - 0.62105
250 654.91 172.87 12.865 - 0.45921
300 754 .10 165.86 11.446 - 0.88688
350 841.25 156.10 9.8873 - 1.1610
450 975.31 135.78 6.5411 - 2.1070
500 1022.1 121.74 4.9259 - 3.7584
550 1055.9 103.47 3.3970 - 6.8382
600 1077.6 82.420 2.0024 -12.231
628.75 1085.1 70.000 1.3706 «19.150
-
Exit time t, = 79.47 + 1bb.b4

2

“ianp at exit time Ra = 806.40 miles
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SECTION VIII

CONCLUSIONS AND REMARKS

From the computational experience based on the problems studied
above, the method of conjugate gradients has been shown to be a useful
computational tool in solving both linear and nonlinear optimal control
problems with state variable constraint. The method is basically
simple and relatively easy to program. Although the search directions
are only locally conjugate with respect to the second Frechet
derivative of the performance functional, they still provide
satisfactory convergence. The results presented in Section VI indicate
that the conjugate gradient method has a higher rate of convergence
in comparison with the method of steepest descent, but the difference
in the rate of convergence is less pronounced for this constraint
problem, as compared with the cases of unconstrained problems reported
by other investigators [131, [14], because of the following reasons:
(i) The set of admissible controls Q is restricted, and consequently
only small step size in the search direction is permitted in Region I.
That is, the convergence is along the expanding sequence of sets
{_ B n Q} instead of expanding sequence of subspaces. (ii) The rate
of convergence in Region III depends heavily on the choice of the exit
corner in each iteration. A considerable portion of computational
time in each iteration is devoted to the determination of the optimum
step size in the search (although the exact optimum is not essential)
and the determination of jumps in the costate at the entering corner.

To assure that the sequence of approximating controls converges

to optimum, it suffices to have the initial estimated control so that




the second Frechet derivative evaluated there is positive definite.
The method of conjugate gradients, like many other optimization
techniques, cannot differentiate local minimum from absolute minimum,
and consequently the initial estimated control must be selected
cautiously unless the given problem is known to have only one minimum.
In converting the constraint control problem to an equivalent
unconstrained one by introducing a penalty function, the computational
process involves more time in contrast to the approach which considers
the constraints directly, but it requires less programming work. Its
effectiveness depends heavily on the proper choice of the function m.
We have treated only the control systems that are time-invarying, but
the extension of the conjugate gradient method to encompass the time-
varying systems is straightforward.
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